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lectures in Topological Spaces-Department of 

Mathematics -Fourth stage 

Syllabus 

1- Definitions and (Examples) of a Topological Space. 

2- Types of Topological Spaces. 

3- Closed subsets of a topological space. 4- Neighborhoods. 

5- Closure of a Set. 6- Topologies Induced by Functions. 

7- Interior of a Set, Exterior of a Set, Boundary of a Set and Cluster 

Points.   

8- Dense Subset of the Space. 9- Dense Subset of the Space. 

10- Continuous Functions. 

11- Open and Closed mappings 

12- Homeomorphisms. 

13- Topological spaces and Hereditary Property. 

14- Compactness in Topological Spaces. 

15- Connectedness in Topological Spaces. 
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16- Separation Axioms and study relationships between them. 
 

Topological Spaces 
The first lecture 

Definition:  

Let X be a non-empty set. Then the collection T of sub sets of X is called 

Topology for X if T satisfies the following axioms:- 

1- X and Ø ∈ T. 

2- If A1 and A2 are any two sets in T. then A1 ∩ A2 ∈ T. 

3- If {Aα: α∈∆} be an arbitrary collection of sets in T then   {Aα: α∈∆} is in T.  

Remark:  

If T is topology on X. Then (X, T) is called Top-space.  

Remark:  

In a topological space (X.T). The members of T are called open sets. 

So: in a topological space (X.T):- 

1- Ø, X are open sets 

2- The intersection of finite collection of open sets is open.  

3- Arbitrary (in finite) union of open sets is open. 

Examples: 

Let X = {a, b, c} consider the following collection of subset of X:  

T1 = {Ø, X, {a}} and T2 = {Ø, X, {a}, {a, c}}.  
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It's clear that each one of above collections or families are topology or X  

T3 = {Ø, X, {a}, {c}} not topology on X because {a} ∈ T3 and {c}  ∈ T3 But {a}   

{c} = {a, c} T3. 

Some types of topological space 

First: Let X ≠ Ø. The collection Ti = {Ø, X} is topology and it known indiscrete 

topology. 

The pair: (X, Ti) is called Top-sp 

Second:  X≠Ø and Td is collection of all possible subsets of X. then Td is 

topology for X. (i. e) Td = {power (X) = {P(X)}  

Third: Let X ≠Ø and T* = {U: X-U is finite}   {Ø}  

(i.e) T* consist of Ø and all non-empty subsets of X whose complement are 

finite. 

Then (X , Tc) is called co-finite Top. 

Fourth:  Let X ≠ Ø and T
c 
= {U: X-U countable}   {Ø}  

Then (X, T
c
) is called co-countable Topological space.. 

Fifth: Let X = R be all a real numbers and Let Tu be a family consisting of Ø 

and all non-empty subsets G of R which have the following property:-  

{∀ x ∈ G} open interval Ix such that X ∈ Ix ⊆ G, Then (X, Tu) is called usual 

Topological space. 
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Comparison of Topologies-The second lecture 

Definition:  

Let T1 and T2 be any two topologies for a set X ≠ Ø:- 

1) If every open set in T1 is open set in T2 then we write T1⊂T2 and say :  

T1 is coarser or weaker or smaller than T2 or T2 is finer or stronger or 

longer than T1. 

2) If either T1 ⊂ T2 or T2 ⊂ T1 we say that T1 and T2 comparable otherwise 

we say not comparable. 

Definition:  

Let (X, T) be a topology space a subset F of X is said to be closed if the 

complement F
c
 ∈ T 

Intersection and union of open and closed set 

Theorem:  

1- The intersection of a finite collection of open sets is open . 

2- The intersection of finite collection of open sets not necessarily open set. 

3- The union of in finite the collection of open sets is open. 

Theorem:  

1- The union of finite collection of closed sets is closed. 
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2- The union of in finite collection of closed sets not necessarily closed set. 

3- The intersection of in finite collection of closed sets is closed. 

Definition:  

A topological space (X,T) is called door space . If every subset of X is either 

open or closed. 

Definition:  

Let (X, T) be a topological space and let x ∈ X . Then a subset N of X is said to 

be:- 

T-neighborhood or neighborhood of x if there exists open set G such that x ∈ G 

⊆ N. 

Definition:  

The set of all neighborhoods of a point x ∈ X is called the neighborhood system 

of x and denoted by Nx. 

Definition:  

Let (X, T) be a topological space. Let x ∈ X and let Nx be the T – neighborhood 

system of X. Then the sub family βX of Nx is called local base of x if for each N 

∈ Nx ∃ B ⊆ Bx such that X ∈ B ⊆ N. 

Definition:  

Let (X, T) be a topology space.  a sub family β of T is said to be form a base for 

T if for each open set G and each x ∈ G ∃ a member B in β such that x ∈ B ⊆ G  
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Limit points and closure of sets- The third lecture 

Definition:  

Let (X, T) be a topology space and let A ⊆ X A point x ∈ X is called adherent 

point or contact point of A if every open set containing X. Contains at least one 

point of A  

Definition:  

A point x ∈ X is called a limit point or accumulation point of A or a cluster 

point of A if and only if every open set containing x contains at least on point of 

A other than x . 

Remark:  

The set of all limit points of A is called the derived set of A and will denoted by 

À or Dr (A)  

Theorem:  

Let (X, T) be a topology space and let A ⊆ X. Then A is closed if and only if À 

⊆ A . or D(A) ⊆ A . 

Theorem:  

Let (X, T) be a topological space and let A and B be any subset of X then: 

1-    = Ø or D(Ø) = Ø 

2-  If A ⊆ B  ⇒ D(A) ⊆ D(B) 
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3- D ( A ∩ B) ⊆ D(A) ∩ D(B)  

4- D ( A   B )= D(A)   D(B)  

Definition:  

Let (X,T) be a topological space and let A ⊆ X , then the intersection of all 

closed sets of A is called the closure of A and denoted by Ā or C/(A). 

Theorem:  

Let (X, T) be a topological space and let A ⊆ X. Then Ā is the smallest closed of 

A {contains A}. 

Theorem:  

Let (X, T) be topological space and let A ⊆ X then A is closed if and only if Ā = 

A. 

Theorem:  

Let (X, T) be a topological space and let A and B be a subsets of X then:-  

1-     = Ø and    = X and    =    

2- If A ⊆ B ⇒     ⊆   

3- (                ⊆ (       )  

4- (                ⊆ (       ). 
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Interior, Exterior and Boundary of sets- The fourth lecture 

Definition:  

Let (X, T) be a topological space and let A ⊆ X, a point x ∈ A is said to be a 

interior point of A if and only if A is a neighborhood of x. 

Remark: the sets of all interior points of A is called the interior of A and 

denoted by int (A) or A
0
. 

Theorem: Let (X, T) be a topological space and let A ⊆ X , then:-  

1- A
0
 is the largest open subsets contained in A. 

2- A is open if and only if and only if A
0
 = A or int (A) = A. 

Theorem: Let (X,T) be a topological space and let A and B be any subsets of X , 

then :- 1- Ø
0
 = Ø , X0 = X and (A

0
)
0
= A0. 2-If A ⊆ \b ⇒ A0 ⊆ B0 

3- (A ∩ B)
0
 = A0 ∩ B0. 
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Definition: Let (X, T) be a topological space and let A ⊆ X a point x ∈ X is 

called an exterior point of A if and only if it is an interior point of A
c
. 

 Remark: The set of all exterior points of A is called the exterior of A and 

denoted by ext (A). 

Definition: Let (X, T) be a topological space and let A ⊆ X. A point x ∈ X is 

called boundary point or frontier point of A if and only if :- 

Let (X, T) be a topological space and let A ⊆ X. A point x ∈ X is called 

boundary point or frontier point of A if and only if :- 

Every open set containing x intersects both A and A
c
 or A and cl (A). 

Remark:  

The set of all boundary point is called the boundary of A written as bd (A) or 

Fr(A)  
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Definition: Let (X, T) be a topological space and let A ⊆ X, then A is said to be: 

1- Everywhere dense if     = X. 2- Nowhere dense if ext(A) = X.  

3- Dense in itself if     ⊆ A (i.e.) every limit point of A is in A. 

4- Dense relative to another set B , if B ⊆    . 

Definition: A topological space (X, T) is said to be separable if and only if there 

exists a countable dense subset A of X. 

Definition  

Let (X, T) be a topological space and let Y ⊆ X, then The collection Ty = {G ∩ 

Y: G ∈ T} is topology on X.  

 

 

 

Sub-Spaces on Topological Space- The fifth lecture 

 

Introduction:  

It is always possible to construct new topologies from the given ones. The 

simplest one is the relativized Topology. 

If (X, T) is topological space and Y⊂ X, then Y can inherit a topology from X; 

as shown in the following result. 

Definition:  
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If (X, T) is topological space and Y ⊂ X, then, the collection          ∈

   is a topology on Y.  

Proof: We observe that    satisfies the following properties: 

 ∈            ⇒  ∈     

 ∈            ⇒  ∈     

         ∈                                 

Then, for each  ∈   ∃ a set   ∈   such that          

      ∈            ∈    

          ∈      ∈                ∈   ∈    

Let   and    be any two sets in     

Then         and         for some             

                    

                              ∈               ∈    

Hence,    is a topology for Y. 

Remark:  

This topology    is the relativized or inherited topology on Y. Also (      is 

called the sub-space of       . 

Example  
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Let               and let                                      be a 

topology on X. 

Let          . 

Then, we have  

                                    

                                      

  relativized topology on Y is given by  

                              

 

 

 

 

 

Example:  

Consider the usual topological space (R, u). Let N be the set of all natural 

numbers. Then, the relativized topology    on N is the discrete topology. 

Proof: For an arbitrary  ∈    we have  

       
 

 
   

 

 
   ∈    since    

 

 
   

 

 
 ∈  . 
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Thus, each singleton subset of N is    - open. 

Now, if A is any subset of N, then it can be expressed as the union of singleton 

subsets of N, each one of which is    - open. 

And, the arbitrary union of sets being open, it following that A is   - open. 

Thus, every subset of N is    - open. Hence, the relativized topology for N is 

the discrete topology. 

Remark:  

If (      is a sub-space of the space       , then a set open in X is not 

necessarily open in Y. 

 

 

 

 

 

Sub-Spaces on Topological Space-Continued- The sixth lecture 

Theorem:  

Let (      be a sub-space of  a topological space      , then, a subset A of Y 

is   -closed if and only if        for some  -closed subset F of X. 

Proof:  
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       - closed 

       is   -open 

           for some  ∈   

                      [by De-Morgan’s law ] 

              is  -closed 

       where     is  -closed. 

Theorem:  

Let     ,       , and         be three topological spaces such that        is a 

subspace of       and         be a subspace of       . Then,         is a 

subspace of      . 

Proof: 

Clearly, Y⊂X and Z⊂Y, so, Z⊂X 

In order to prove that         is a sub-space of      , we must show that the 

T-relativized topology on Z is     i.e. T.=        

Let E ∈      Then, 

      for some  ∈                [        is a sub space of       ] 

             for some  ∈       [       is a sub space of      ] 

                                [Z⊂Y]  
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Thus,       for some  ∈   and therefore,  ∈     

so,     ∈    ⇒  ∈           
  ⊆     

Again, let  ∈         Then,       for some  ∈    

But,  ∈  ⇒    ∈                   [       is a sub space of       ] 

                     ⇒        ∈        [        is a sub space of       ] 

                     ⇒            ∈     

                     ⇒  ∈     

Thus,  ∈   ⇒  ∈     and therefore,   ⊆      

Hence,       . 

Accordingly, (Z,    ) is a subspace of (X, T). 

Theorem:  

Let        be a subspace of a topological space (X, T). Let  ∈    Then, a 

subset M of Y is a         of y iff       for some         N of y. 

Proof: 

Let M  be a         of y. 

Then, ∃      open set H such that  ∈  ⊆    

Now, H being   -open, we have       for some  ∈   . 

   ∈    ⊆    
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Let         

Then,  ∈  ⊂        where  ∈    

This shows that N is a        of y. 

Further,                            

[   ⊆              

Conversely, let       for some        N of y. 

Then, ∃ a  -open set G such that  ∈  ⊆    

Consequently,   ∈    ⊆       

This shows that M is         of y.    [   ∈     

 

 

 

 

 

Sub-Spaces on Topological Space-Continued- The seventh lecture 

Theorem:  

Let        be a subspace of a topological space (X, T). Let  ⊂  . Then, 
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Proof: 

Since          is T-closed, it follows that          is   -closed, 

Thus,          is a   -closed superset of A. 

But,        being the smallest   -closed superset of A 

      ⊆                                             . . . . . . .    (i) 

Again,        being   -closed, we have 

            for some T-closed set F. 

 ⊆              so  ⊆    

Now,  ⊆  ⇒       ⊆       [⸪ F is T-closed] 

        ⊆                               . . . . . . .  (ii) 

Hence, from (i) & (ii) we have,                   

Theorem:  

Let        be a subspace of a topological space (X, T). Let  ⊂  . Then, a 

point  ∈   is a T-limit point of A if and only if y is a T-limit point of A. 

Proof: 

y is a   -limit point of A. 

                                ∀   -      M of y 

                                    ∀   -      N of y 
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                                ∀   -      N of y 

                     y is a  -limit point of A. 

Remark: If        and       denote the derived sets of A in        &       

respectively, then 

                

Theorem:  

Let        be a subspace of a topological space (X, T). Let  ⊂  . Then,   -int 

(A) ⊃ T-int (A). 

Proof:  

 ∈  - int (A) ⇒  y is a T-interior point of A 

                          ⇒  A is a T-nhd. of y 

                          ⇒      is a   -nhd. of y 

                          ⇒     is a   -nhd. of y       [ ⊂  ⇒      ] 

                         ⇒  ∈   -int (A) 

  -int (A) ⊃ T-int (A) 

Remark:  

In general,   -int (A)   T-int (A). 
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Example: Let X={ a, b, c, d, e} and let T={ X,    {a}, {a, b}, {a, c, d}, {a, b, e}, 

{a, b, c, d} be a topology on X. 

Let Y={ a, c, e}. Then,   ={Y,   {a}, {a, c}, {a, e}}. 

Now, if A={a, c}⊂ Y, then clearly 

  -int (A)={a, c} and T-int (A)={a}. 

Thus, in general,   -int (A)   T-int (A). 

Theorem:  

Let        be a subspace of a topological space (X,T) and let  ⊂  . Then,   -

bd (A) ⊂ T-bd (A). 

Proof: 

 ∈   -bd (A) ⇒  ∈                 

                           ⇒  ∈           ∈          

                          ⇒  ∈           ∈              

                          ⇒  ∈            ∈                    [   ⊆        

                          ⇒  ∈           

    -bd (A) ⊂ T-bd (A) 

 

Theorem:  
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Let        be a subspace of a topological space (X,T). Let   be a base for T, 

then          ∈    is a base for     

Proof: 

Let H be any   -open set and let  ∈  . Then, ∃ a  -open set   such that 

       

Now,   is a  -open set containing       is base for    

So, ∃ a set   in   such that 

         ∈  ⊆   

      ∈    ⊆       

Thus, to each   ∈        ∈   ∃    ∈     such that   

      ∈    ⊆    

This shows that    is a base for  .   

Definition: A property of topological space is called or said to be a hereditary 

property if it is satisfied by every sub spaces of the given space 
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 The Continuity in Topological spaces- The eighth lecture 

م الاستمرارية يبين صنفاً من الدوال ذا اهميه خاصه ليس فقط في دراسة الرياضياتان مفهو  

نفسهاً بل حتى في الاستخدامات العديدة في الهندسة والفيزياء حيث ان هذا الصنف من الدوال  

فالاستمرارية من مفاهيم الرياضيات الاساسية ذات المدلول الهندسي المباشر على , دوراً مهما 

دالة وقولنا ان الدالة مستمرة في نقطة ما يضن ان مخططها في تلك النقطة متصل مع مخطط ال

وسنقدم في هذا الفصل مفهوم استمراريه الدوال في الفضاءات التبولوجيه بشكل . بقيه اجزاءه 

كما تضمن هذا الفصل . عام وتقدير مبرهنات مهمة توضح هذا المفهوم في هذه الفضاءات 

ءات الجزئية او ما تسمى بالفضاءات النسبية ودراسة مفهوم الاستمرارية دراسة موضوع الفضا

. في هذا الفضاء وتقديم اهم الخواص المتعلقة بهذا الموضوع   
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Definition:  

Let(X, T) and (Y, T) be topological spaces and Let        be Map Then f is 

said to continuous at  ∈    iff for each U open in Y (f ( ) ∈ U) ∃  an open set 

  in   containing   ( ∈    such that f (V)  ⊆    

 

Remark:  

If the mapping f continuous at each  ∈   then the mapping is called 

continuous mapping  

Example:  

Let X = {1, 2, 3} and T = {                    
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Let Y = {a, b} and T={              

f :     defined as f (1)= a ,f (2) = f (3)=b  

G =     defined g (1) = b , g (2)= g (3) = a  

Then f is continuous mapping but g is not continues mapping. 

Example:  

Let f: (X, T)   (X, T) be a constant mapping then f is continuous. 

Proof:- 

Let f: X   Y defend by f (x) ∈ c , ∀  ∈    

Let U be open subset in Y then:  

         
          ∈   

          ∈  
 

Since   and X are open subset then f is continuous.  

Example:  

Let x= { a, b, c, d} and T={ ,X,{a}, {a,b},{b,c,d} , {b}}and f: (X,T)  (X,T) be a 

mapping by : f(a)=   ,f (c)=b , f (b)=d , f (d)=c Then 

1- f if not continuous . 

2- f continuous at point d. 

3- f not continues at point c. 
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Definition: 

 A mapping f: (X, T)   (Y, T*) is open mapping iff U is open in x then f (U) is 

open in Y.      

Example:  

Let (X,T)be topology space and let Y={a, b, c} and T ={                 Then a 

mapping f:X    defined  as :f (x)= , ∀  ∈ X is open. 

Definition:  

A mapping          (Y,T
*
) is closed iff E is closed in X then f(E)closed in Y.  

Example:  

Let (X, T) be a topology and Y={a, b, c}and T={Ø ,Y, {a},{a, c}then mapping 

                     ∀  ∈              
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Results on continuous mapping in Topology spaces- The ninth lecture 

Theorem:  

Let (X, T) and (Y, T
*
) be topology space let       then f is continuous iff the 

in veres image under f of every open set in y is open x. 

Proof:- 

Let f be continuous and let H be any open satiny if  -1
(H) = Ø, it is clearly open 

so let   
-1 
(H) ≠Ø,      ∈  -1

 (H)  

Then     ∈   Bycontinuity of f ,∃ an open set Gin X such that  ∈

          ⊆ H. consequently  ∈  ⊆ f 
-1

(H) 

This show that f
-1

 (H) is  nhd of each of its points and therefore, it is open in X.  

Conversely , let the inverse image under f of every open set in y be open in X, 

then in order to show that if is continues  it is sufficient to show that it is 

continues at an arbitrary point  ∈   let H be any open set in y such that 

    ∈  . Then  ∈ f
-1

 (H) .by hypothesis f
-1

(H) is an open set in X Now, if we 

set f 
-1

(H) = G , Then h is an open set in X contain x such that f(G)= f [ f 
-

1
(H) ]⊆ H. This Show that f is continues at each point of X. 

Theorem:  
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Let (Χ, T) and (Y, T) topology space and let f: Χ   Y Then F is continuous 

iff for each x ∈   The inverse image under F of every T – nhd  of  f (x) is T-nhd 

of X.  

Proof:-  

Let f be continuous and let  ∈    let M be and T – nhd of f (x) then     open 

set Hiny Such that f(x) ∈   ⊆    -1(M) Since f is continuous and His   open , So 

f 
-1

(H) is T- open this Show that  f 
-1

(M) is a T – nhd of X.  

Conversely , let the inverse image under f of every T-nhd of f(x) be a T-nhd of 

X let H be any open set in Y note is f 
-1

(H) =  , it is clearly open So let f 
-1

(H) 

    and let  ∈   
-1

(H) then f (x) ∈    This show that His a T- nhd of f  (x). So 

by hypothesis ; f (H) is aT- nhd of X .Thus f 
-1

(H) is a T-nhd of each of its 

points and there its open, so it follows that in verse image under f of every open 

Sub of Y is an open Sub Set of X. Hence f is continuous.  

Theorem:  

Let ( X, T) and (Y,T) be topology space and f: X     then f is continuous iff 

the inverse image under f of every closed Subset of Y is a closed sub set of X. 

Proof:-  

let f be continuous and let K be any closed sub set of Y then (Y-k) is an open 

sub set of y so by continuity of  f, f 
-1

(Y-k) is an open sub set of X But, f 
-1

(Y
-1

(k)) 

is open and therefore f 
-1

(k) is closed 
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Conversely: - let the inverse image under f of every closed sub set Y then (Y-H) 

is closed and therefore by hypothesis f
-1

(Y-H) is closed But f 
-1

(Y-H) = f 
-1

(H) = 

X-f 
-1

(H). So X. f 
-1

(H) is closed and therefore f 
-1

(H) is open. Thus the inverse 

image under f of every open sub set of Y is an open sub set of X. This show that 

f is continuous.  

Theorem:  

Let X, Y and Ƶ be any three Top – Spaces and let f: X     and g: Y   Ƶ be 

cont mappings Then the composite gof : X     is continuous.  

Proof:-  

Let H be any open sub set in Ƶ, we must prove that (gof) 
-1

(H) is open sub set in 

X. Since g is cont    g
-1

(H) is open sub set in Y and  Since f is cont    f
-1

(g
-

1
(H))) is open sub set in X So, f 

-1
(g(H)) = (f

-1
og

-1
) (H) = (gof

-1
) (H) is open in X. 

Thus The inverse image under (gof) of every open sub set of  Ƶ is open sub set 

of X. 

Theorem:  

Let (X, T) and (Y,T*) be a Topological space and Let f: X   Then f is 

continuous iff for every B ⊆    -1
(B) ⊆ f 

-1
(    

Proof:- Let f be continuous and let B ⊆ Y. Then   being closed, by continuity 

of  ,   
-1

( ) is closed       (B) =  -1
( ). Now, B ⊆       -1

(B) ⊆ 

  -1
 ( )      

 
-1

(B) ⊆   
-1

( ).  

Conversely:- Let f 
-1

(B) ⊆ f 
-1

( ) for every B ⊆  . 
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Now, let K be a closed sub set of Y so that   = K. 

Now, by hypothesis,   
-1

(K) ⊆ f
-1

( ) = f 
-1

(K). But, f 
-1

(K) ⊆ f
-1

(K) 

    f -1
(K) = f 

-1
 (K) showing that f 

-1
(K) is closed thus the inverse image under f 

of every closed sub set of Y is a closed sub set of X Hence f is continuous.  

 

Results on continuous mapping in Topology spaces-Continued- 

The tenth lecture 

Theorem: 

Let ( X, T) and ( Y,T
*
) be topology space and let        then f is continuous 

iff for every  ⊆   , {f
-1
(B)    ⊆ f 

-1
(B  )  

Proof:-  

Let f be continues and let B⊆ y .then B   being open, by continuity of f, f
-1 
(B  ) is 

consequently { f
-1
 (B  ) ⊆ f 

-1
 (B)   { f

-1 
(B   )     ⊆ { f 

-1
 (B)     

  { f
-1 
(B   ) ⊆  { f 

-1
 (B)       { f

-1
 (B)     f

-1
 (B)  for every B⊆ Y  

Conversely:- Let { f
-1
 (B)        f -1 (B)   for every B ⊆ Y  

Let H be any open sub set of Y , so that H   = H  

  By given hy phthisis f
-1

(H) ⊆ { f 
-1
 (H)   Or  

f
-1 

(H ) } ⊆{ f 
-1
(H)     But {f

-1 
(H )     ⊆ { f 

-1
 (H)   {f

-1 
(H )       f -1 (H) 
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Showing that f-1(H) is open Thus, the inverse image under f of every open sub 

set of Y is on open subset of X Hence f is continuous  

Theorem:  

Let X, Y and Z be any Three topological spaces Let        and        be 

continues mapping then, the composite mapping (gof) :(X  Z is continuous  

Proof:-  

Let H be any set open z. then by continuity of g, g
-1 

(H) is open in Y And by 

continuity of  f
-1

{g
-1

 (H) } is open in X  

So , f 
-1

 { g
-1 

(H) } = ( f
-1

og
-1

 ) (H) is open in x. Thus the inverse image under (g 

of) of every open subset of Z is an open subset of X. Hence of is continuous.  

Theorem:  

Let ( X, T) be a Top – SP and let Y ⊆   Then the collection:-  

Ty = {G   : G ∈  } is Topology on X.  

Proof:-  

(1)   ∈   And     =     ∈  y.  

  ∈   And X       ∈  y.  

(2) let H1 and H2 be any tow sets in  y ,  we must prove That 

 H1   H2 ∈  y.  

Since H1 ∈ T1   H1   G1    for some G1 ∈ T 
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Since H2 ∈ Ty   H2   G2    for some G2 ∈ T 

So , H1   2 = ( G1         2      

= (G1   G2)    ∈  y 

   H1   H2 ∈  y 

(3) let { Hx :  ∈   beany family of setsin Ty.  

We must prove that    x:  ∈   ∈  y. 

Since { Hx : :   ∈   ∈  y. so that for each :   ∈   

   A set G   ∈   "S – t " Hx = G        { Hx:  ∈   =   { Gx    :   ∈   = 

[   x :   ∈        ∈  y Therefore       x:  ∈   ∈  y .  

Theorem:  

Let (X, T) and (Y,T
*
) be topology space and let f: X    be continuous let  A 

⊆X Then the restriction fA of  f to A is TA – T  continuous 

proof:-  

let H be and T
*
 - open sub set of Y then fA

-1
 ( H) = A    

-1
(H)  

Note, by continuity of f , f
-1

 is T- open and therefore: 

A    
-1

(H) is TA – open. Consanguinity, fA
-1

 (H) is TA – open Thus the inverse 

may under fA of every T – open sub set of Y is a TA – open sub set of A.  

Theorem:  
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Let ( X, T) and ( Y, T
*
) be topology space and f: X    be one – one and 

continuous. Then f maps every dense in itself subset of X on to dense in itself 

subset of Y 

Proof:-  

Let A be dense init self subset of X , Then every point of A is a limit point of A . 

Let Y ∈     . Then f being one- one ∃ aunigue X∈    such Y = f (x) new let N 

be T-nhd of f (x) then by continuity of f,  -1
(N) is a T – nhd of X But. X∈ A 

being a limit point of Af
-1
(N) must contain at least a point Ƶ    of A.   

Now Ƶ ∈  -1
(N)        ∈ (N). 

AISO Ƶ                     

Thus N contains at least one point f (    of  f (A) defferent fromy. This shows 

thaty is a limit point of  f (A) thus each point of f (A) is a limit point of  f (A) . 

Hence f (A) is dense in itself.  

Theorem:  

E every continuous image of separable space is separable.  

Proof:-  

Let (X,T) be separable and let (Y, T
*
) be topological space let be a continuous 

mapping of X on to Y Now X being separable ∃ a countable subset A of X Such 

that       Y = f (X) = f (Ā) ⊆      



32 
 

So,        .   f (A) ⊆      always. Also f (A) is countable dense subset of Y , 

Hence (Y, T
*
) is separable. 

 

 

 

 

 

 

 

 

 

The homeomorphism in topological Spaces- The eleventh lecture  

INTRODUCTION 

ةـــــمقدمال   

يعتبر مفهوم التشاكل او التكافؤ التبولوجي من المفاهيم المهمة في هذا الفصل ثم دراسة مفهوما 

م التوبولوجيا وتكمن اهمية هذا المفهوم في مهما لاقل اهمية عن مفهوم الاستمرارية جدا فيعل

كونه أنه بعض الصفات التبولوجية مثل كون المجموعة مفتوحة او مغلقة هي صفات تبولوجية 

كل التبولوجي وذلك كون التشاكل يلعب دورا رئيسيا ومهما في انتقال الصفات اتنذل بفعل التش

من وقد تمكنا في هذا الفصل . الترابط التبولوجية من فضاء تبولوجي او فضاء تبلوجي اخر مثل
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دراسة مفهوم التشاكل وأهم خواصه وصفاته التي يتمتع بها الفصل الثالث يتألف من بندين 

رئيسيين تطرقنا في البند الاول لمفهومي الدوال المفتوحة والمغلقة ودراسة خواصها لدورها 

أهم النتائج المتعلقة بهذا المفهوم البارز بالنسبة لمفهومي الاستمرارية والتشاكل التبولوجي و

.التكافؤ التبولوجي بين الفضاءات التبولوجية  

 

 

 

Definition:  

Let (X, T) and (Y, T
*
) be Top – spaces and let f: X  . Then f is said to be:-  

1 – Open mapping iff the image under f if every open set in X is open set in Y.  

2 – Closed mapping iff the image under f of every closed set in X is closed set in 

Y. 

3 – bi-continuous mapping iff f open and continuous.  

Example:  

Let ( X, T) and ( Y, T
*
) be a topology spaces: where  

          And T
* 
= {                then a mapping f: X     defined as:  
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       ∀   ∈    Is open since for any u is T-open set, we have:  

                  When u =    

f (u) =  

                   When u     

And each on of     and {a} is T
*
 - open set.  

                  ∀        Subset in X} 

  Example:  

Let (X, T) and (Y, T
*
) be topology spaces and let           and T

*
 = 

                 

Then the mapping f:      defined as:-        ∀  ∈     is closed mapping 

since for any f is T – closed set ,  

                  When F =    

f (F) =  

                   When F     

And each one of     and {b} is T
*
 - closed  

{f (F) is closed in    ∀    closed sub set in X.} 

Theorem: 

Let ( X, T) and (Y, T
*
) be topology space let f:X    Then f isopen iff  f (Å) ⊆ 

[ f (A) ]  for every A ⊂X 
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Proof:  

Let f be open, Then A  being open it follows that f (A)  is open consequently, [f 

(A)            

Now: A  ⊆         ⊆      

                                ⊆         

                                ⊆          

Conversely: let f (A   ⊆         for every A ⊂X  

Let A be an open subset of X so that A     

   f (A)  ⊆              ⊆         
         But        ⊆       

                This show that f (A) is open when every A is open.  

 

 Theorem:  

Let ( X,T) and ( Y, T)
*
 be topology space let f:      then f is closed iff  

     ⊆       for every A ⊂X.  

proof: Let f be closed and let A ⊂X. then   being closed f     is therefore 

closed consequently      =       

Now, A ⊆          ⊆       

                                 ⊆         
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Hence,      ⊆       for very A⊂X  

Let A be a closed subset of X then A = A
- 

      ⊆             ⊆               
 

But,     ⊆       Therefore              

This show that f (A) is closed, when every so is A. Hence f is a closed mapping.  

Definition:  

Two topological spaces (X, T) and ( Y, T
*
) are closed homeomorphic if there 

exits: One – to – one and onto function f: X    such that f and f 
-1

 are 

continuous and the function f is called homeomorphism.  

 Example:  

Let             and                         

And             and  *                     
 

And f: X    defined as:  

f (a) = a , f (b) = b , f (c) = c, f (d) = d. is (X, T)  

And (Y, T
*
) are homeomorphic?  

1 – f is one – to – one and onto But f is not continuous since {c} ∈  * 
But  

f 
-1

{c} = {c}    . Therefore f is not homeomorphic.  

Example:  
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Let                                    and g:            * 
such that:- 

g (a) = d , g (b) = c , g (c)= b , g(d) = a. is  

(X, T) and (Y, T
*
) are homeomorphic?  

Sol:-  

(1) And (2) are clear g is one – to – one and onto.  

(3) Is g continuous?  

(*)  ∈  *
   g

-1
 (y) =  ∈          

 (*) g
-1

{      ∈    

(*) g
-1

{c} = {b} ∈   * , g
-1

{d} = {a} ∈   and  

(*) g
-1

 {c, d} = {a, b} ∈   . So g is continuous,  

(4) is g
-1

 continuous?  

(*)  (g
-1

)
-1

 {a} = g {a} = {d} ∈ T
*
  

(*)  (g
-1

) 
-1

{      ∈  * 

(*) (g
-1

) 
-1

 {b} = g {b} = {c} ∈    

(*)  (g
-1

) 
-1

{      ∈  *
.  

(*) (g
-1

) 
-1

 {a, b} = g {a, b} = {d, c} ∈  *  

Since g is one – to – one, onto, g and g 
-1

 are continuous.  

So, g is homeomorphism. Therefore (X, T) and (Y, T
*
) are homeomorphic  
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Theorem:  

let (X,T) and (Y, T
*
) be topology space let  f be a one – one mapping of  on to Y  

then the following statements are all equivalent to one another:-  

(i) f is open continuous.  

(ii) f is homeomorphism .  

(iii) f is closed and continuous.  

Proof:-  (i)   (ii) let f be a one – one open and continuous mapping of X onto Y 

then by definition it is a homeomorphism so  (i)   (ii) 

(ii)   (iii) : let f  be homeomorphism. Then it is a one – one continuous open 

mapping of X onto Y. Let f beany closed subset of X then (X-f) is open 

Now f being open it follows that f (X-f) is open But  

f (X-f) = f (X) – f (F) = Y-f (F)  

Thus Y-f (F) is open and therefor, f (F) is closed. This show that f is closed and 

continuous so (ii)   (iii)  

(iii)   (i) : let f be closed and continuous let G be an open subset of X then X – 

G is closed and being closed f (X-G) is therefore, closed 

But, f (X-G) = f (X) – f (G) = Y-f (G) 

Thus, Y. f (G) is closed and therefore, f (G) is open this show that f is closed 

and continuous.  
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So (iii)   i) Thus , (i)   (ii)   (iii)   (i) Hence all the given statements are 

equivalent to on another 

Theorem:  

Let (X, T) and (Y, T
*
) be topology space let f : X      be a one – one mapping 

of X on to y then f is a homeomorphism iff  f (Ā) for every A⊂X  

Proof:  

Let f be homeomorphism. Then f is a one – one continuous and closed mapping 

of X onto Y.  

Let A⊂X then by continuity of  f , we have f (Ā) ⊆ f (A)  

Also, f being closed we have f (Ā) ⊆ f (A) , hence f (Ā)   f (Ā)   

Conversely: - let f : X    such that is f is one – one onto and for every  ⊂   , 

let f  (Ā) =      Then f (Ā) ⊆    Ā)  and      ⊆    Ā) . But these results show 

that f is continuous and closed f is one – one onto also, so it a homeomorphism. 

The homeomorphism in topological Spaces-Continued- The 

twelfth lecture  

Theorem:  

Let (X, T) and (Y, T
*
) be topology space let f: X    Be a one – one mapping 

of X onto Y then f is a homeomorphism iff  f {A}  = {f(A)}  for every A⊂   .  

Proof: 
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Let f be homeomorphism. Then f is are one-one continuous and open mapping 

of X onto Y let A ⊆  .  

Then f being open we have f (A  ⊆                

Also f being continuous and on to and f (A)⊂   we have  f 
-1

[(f(A)]      

[f
-1

(B  ⊆   -1
(A)]  for every B⊂    

Or [f (A) ⊆       …….. (2)  

Thus for (1) and (2) we get f (A)           

Conversely:-  

Let   be one-one mapping of X onto y such that f (A)          for every 

A⊂   Then f (A) ⊆         and        ⊆        

But      ⊆         for every  ⊂   implies that f is open agin let B⊂X. Such 

that        or    -1
(B)  

Now,  

                -1       ⊆   -1           
 

  -1    ⊆   -1       

     -1    
and f (A)=B} 

is homeomorphism 

           *
)      *

)       
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(iii) Transitivity:-  

Let (X,T)   (Y,T
*
) and (Y,T

*
)   (Ƶ,T

*
)
*
 and let f and g be the corresponding 

homeomorphisms Then f is one-one onto, T
*
-continuous and f

-1
 is T

*
-T 

continuous Also g is one-one onto T
*
-T

**
continuous and g

-1
 is T

**
-T

*
 continuous 

we claim that the composite mapping gof: X     is a homeomorphisms since 

the composite of tow continuous mapping beings being continuous it follows 

that got is T,T
** 

 continuous more-over g
-1

 is T
**

,T
*
 continuous and f

-1
 is T

*
-T 

 

continuous.  

   -1og
-1

 is T
**

-T continuous 

 (gof)
-1 

is T
**

-T continuous. Thus gof is homeomorphisms and then (X,T) 

    **
).  

Hence the relation of homeomorphism on the set of all topology space is an 

equivalence relation. This shows that f 
-1

(B  ⊆   -1
(B)}  for every B ⊂   so f is 

continuous. Thus, f is a one – one continuous open mapping of X on to Y Hence 

f is a homeomorphism.  

 

 

Theorem:  

The relation of homeomorphism on the set of all topological spaces is 

equivalence. 

Proof:-  
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This relation satisfies the following properties: 

 (i)-Reflexivity let (X, T) be any topology space then the identity mapping  I: X 

          .  

Is clearly one-one onto, I is continuous for if G ∈  , Then I
-1

(G)= G ∈   .  

Also I is open, for if G ∈   , Then I(G) = G ∈   . 

Thus I is homeomorphism.                        

(ii) Symmetry: - let            *
 and let f be the corresponding 

homeomorphism. Then f is one-one onto T-T
*
 continuous and open. Now f is 

one-one onto   f 
-1

 is one-one onto f is open   f 
-1

 is T-T
* 

continuous   (f 
-1

)
-1

 

is T-T
*
 continuous Thus show that the mapping f 

-1
 : Y   .  

--------------------------------------------------------------------------------------- 
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Connectedness and Compactness in Topological 

Spaces 
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The thirteenth lecture 

SEPARATION AXIOMS (T0, T1, T2,   
 

 

 T3,  
 

 

, T4, AND T5) 

AND RELATIONSHIPS AMONG THEM 

T0-property and spaces 

A topological space X has the T0 -property if there exists an open set which separates any 

two distinct points: if x and y are distinct points of X, there exist an open set which 

contains one but not the other. Let me be more explicit. A topological space X has the T0 

property if, for any two distinct points x and y in X, either there exists an open set M(x) 

containing x which does not contain y, or there exists an open set N(y) containing y which 

does not contain x. 

NOTE:  that the space X is an open set containing x, but it contains y, and vice versa.  

Here’s a picture of T0, showing an open set containing y that does not contain x. A T0 

space is sometimes, but rarely do I think, called Kolmogorov. 
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The fourteenth lecture 

T0-Space and T1 property and spaces 

A topological space X has the T1 property if x and y are distinct points of X, there exists an 

open set M(x) which contains x but not y, and an open set N(y) which contains y but not x. 

One crucial property of a T1 space is that points (singleton sets) are closed. 

This time each point has an open set which contains it but not the other.  

NOTE: that we did not assert that the two open sets do not intersect, merely that their 

intersection contains neither x nor y. (That’s the next property.) Here’s a picture of T1, 

showing open sets which intersect, but their intersection, as we require, does not contain x 

or y. A T1 space is sometimes, but again rarely, I think, called Frechet. 

 

 

T1-spaces 
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The fifteenth lecture 

T2 property and spaces 

A topological space X has the T2 property if x and y are distinct points of X, there exist 

disjoint open sets M(x) and N(y) containing x and y respectively. Here’s a picture of T2. A 

T2 space is almost always, in my experience, called Hausdorff. One crucial property of a 

Hausdorff space is that limit points are unique. (No, I haven’t defined a limit point. That’s 

another interesting subject.) 

 

T2-spaces 
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The sixteenth lecture 

T3 and regular 

Now we look at separating sets instead of points, still separating them by open sets of some 

kind. First we separate a point and a closed set. (A set A in X is closed if its complement X 

– A is open; the closure of A (    ), is the smallest closed set containing A.) A topological 

space X has the T3 property if there exist disjoint open sets which contain any closed set 

and any point not in the set: for any closed set B and any point     , there exist disjoint 

open sets containing x and B respectively. 

Here’s T3. This time I use uppercase (“B”) and color to denote the closed set. 

 

T3-spaces 

It is crucial that the following set and topology (shown earlier as “an intermediate 

example”) is T3 but not T1 (the problem is that the point is not closed): 

X = {a, b, c} .                   
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This is why and where we need to combine properties in order to get especially 

worthwhile topological spaces. (Yes, we can study T3, T4, and T5 spaces per se. it is more 

fruitful to study T3 + T1, T4 + T1, and T5 + T1) 

We say that a space is regular if it is T1 and T3. 

(In fact, we can show that if a space is T0 and T3, then it is T2, hence T1, hence T1 and T3. 

this means we could have defined a space as regular if it is T0 and T3. Of course, T1 and T3 

immediately implies T0 and T3, so the two possible definitions of “regular” are equivalent.) 

Although I used “normal” and “T4” in the introductory discussion, the alternative 

terminology appears here as well, It applies to all subscripts 3 and higher. Where I say 

that a topological space is regular iff it is T1 and T3 other people use regular to refer to my 

T3 property, and say a topological space is T3 iff T1 and regular. Whereas the progression 

of the earlier separation axioms kept tightening the requirements on the open sets whose 

existence we asserted, here we just replaced a point by a closed set. That would be a 

refinement of the earlier property if points themselves were closed sets. But that’s T1, and 

that’s why we want to study spaces which are both T1 and T3. 
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The seventeenth lecture 

T4 and normal 

Now we separate two closed sets instead of a point and a closed set. A topological space X 

has the T4 property if there exist disjoint open sets which contain any two disjoint closed 

sets: for any disjoint closed sets A and B, there exist disjoint open sets containing A and B 

respectively. 

 

 

T4-spaces 

I should mention that a bad property of T4 spaces is that T4 is not hereditary: not every 

subspace of T4 is T4. We say that a space is normal if it is T1 and T4. We still have the 

analogous: not very subspace of a normal space is normal. 
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The eighteenth lecture 

T5 and completely normal 

Two subsets A and B of topological space are separated if               . 

A topological space X has the T5 property if there exist disjoint open sets which contain 

any two separated sets: for any separated sets A and B, there exist disjoint open sets 

containing A and B respectively. 

 

T5-spaces 

Should mention that an alternative equivalent definition of T5 is that: a space is T5 iff 

every subspace is T4. It corrects the problem with T4. 

We say that a space is completely normal if it is T5 and T1. We have the analogous: a space 

is completely normal iff every subspace is normal. It corrects the problem with normal, 

too. 
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Consider the two open intervals A = (0, 1/2) and B = (1/2, 1) with the usual topology of the 

real line. The sets do not intersect:      , but the closed intervals, their closures, do: 

       
 

 
  

   = [ 
 

 
   ] and           

 

 
  , Nevertheless, A and B are separated, because         

       . 

A and B have the T5 property because A and B themselves are disjoint open sets. All of 

those properties, T0 thru T5, asserted the existence of open sets, sometimes satisfying 

additional conditions. 
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The nineteenth lecture 

 
 

 
 And Completely Regular 

We have an intermediate property which is described differently. 

Given two disjoint subsets A and B of a space X, a Urysohn function for A and B is a 

continuous function            such that f (A) = 0 and f (B) = 1. 

Urysohn’s Lemma, then, says that if A and B are disjoint closed subsets of a T4 space, then 

there exists a Urysohn function for A and B. 

A topological space X has the  
 

 
 property if there exist a real-valued continuous function 

which separates an open set from any point not in it: (i.e.) for each open set  ⊂   and 

each x not in U, there exist a Urysohn function f for x and U. 

We say that a space is completely regular (or Tychonoff) if it is  
 

 
 and T1. 
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The twenty lecture 

Implications of the properties 

At this point, thanks to adding T1 to the definitions, we can show (!) 

Completely normal  normal  completely regular  regular   
 
 

 

  T2  T1  T0 

The implications among the Ti properties (for i >  
 

 
) are not so pretty. 

Note that a Urysohn space was not in that list. Instead of the subsequence completely 

regular  regular   
 
 

 

 

We could have written completely regular  Urysohn   
 
 

 

. 

But there is no inclusion relationship between Urysohn and regular. We have two 

beautiful inclusions, if we omit either regular or Urysohn, but not if we include both. 

This is the second reason why I decided to follow Steen & Seebach and use T’s for the 

properties and names for the combinations. If we did it the other way, with names for the 

properties and T’s for the combinations, we could write 

T5  T4  
 
 

 

 T3   
 
 

 

T2  T1  T0, or, more elegantly, 

Ti  Tj for i > j, with i, j in {0, 1, 2,  
 
 

 

, 3,  
 
 

 

, 4, 5} 

But then we’ve left Urysohn spaces out in the cold. Since the theorem is no longer pretty, I 

chose to use the shorter Ti to denote a property, and write, for example, normal = T1 + T4. 

I first saw them the other way: T4 = normal + T1, etc. 
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And it is possible that I would not have been so struck by them without the lovely Ti  Tj 

for, i > j. (Adamson emphasizes that he chooses this convention because of the simplicity 

of that statement.) Nevertheless, I have presented them the other way. The fact is, if 

you’re studying someone else’s work, you may have to adopt their terminology as long as 

you’re there. 


