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1- Definitions and (Examples) of a Topological Space.

2- Types of Topological Spaces.

3- Closed subsets of a topological space. 4- Neighborhoods.
5- Closure of a Set. 6- Topologies Induced by Functions.

7- Interior of a Set, Exterior of a Set, Boundary of a Set and Cluster
Points.

8- Dense Subset of the Space. 9- Dense Subset of the Space.
10- Continuous Functions.
11- Open and Closed mappings

12- Homeomorphisms.
13- Topological spaces and Hereditary Property.

14- Compactness in Topological Spaces.

15- Connectedness in Topological Spaces.




16- Separation Axioms and study relationships between them.

Topological Spaces
The first lecture

Definition:

Let X be a non-empty set. Then the collection T of sub sets of X is called

Topology for X if T satisfies the following axioms:-

1- Xand J € T.
2- If A;and A, are any two setsin T.then A; N 4, € T.
3- If {A,: a€A} be an arbitrary collection of sets in T then U {A,: a€A}isin T.

Remark:

If T is topology on X. Then (X, T) is called Top-space.

Remark:

In a topological space (X.T). The members of T are called open sets.
So: in a topological space (X.T):-

1- @, X are open sets
2- The intersection of finite collection of open sets is open.

3- Arbitrary (in finite) union of open sets is open.

Examples:
Let X ={a, b, c} consider the following collection of subset of X:

T,={9, X, {a}} and T, = {4, X, {a}, {a, c}}.




It's clear that each one of above collections or families are topology or X

T3 ={4d, X, {a}, {c}} not topology on X because {a} € T; and {c} € T; But{a} U
{c}={a, c} €T,

Some types of topological space

First: Let X # @. The collection T; = {&, X} is topology and it known indiscrete
topology.

The pair: (X, T;) is called Top-sp

Second: X#@ and Ty is collection of all possible subsets of X. then Ty is
topology for X. (i. e) T4 = {power (X) = {P(X)}

Third: Let X #2 and T* = {U: X-U is finite} U {J}

(i.e) T* consist of @ and all non-empty subsets of X whose complement are

finite.
Then (X, T.) is called co-finite Top.

Fourth: Let X# @ and T°= {U: X-U countable} u {J}

Then (X, T%) is called co-countable Topological space..

Fifth: Let X = R be all a real numbers and Let T, be a family consisting of @

and all non-empty subsets G of R which have the following property:-

{V x € G} open interval I, such that X € I, € G, Then (X, T,) is called usual

Topological space.




Comparison of Topologies-The second lecture

Definition:

Let T, and T, be any two topologies for a set X # &:-
1) If every open set in T, is open set in T, then we write T,cT, and say :

T, is coarser or weaker or smaller than T, or T, is finer or stronger or

longer than T,.

2) If either T, € T, or T, € T, we say that T, and T, comparable otherwise

we say not comparable.

Definition:

Let (X, T) be a topology space a subset F of X is said to be closed if the

complement F°e T

Intersection and union of open and closed set

Theorem:
1- The intersection of a finite collection of open sets is open .
2- The intersection of finite collection of open sets not necessarily open set.

3- The union of in finite the collection of open sets is open.

Theorem:

1- The union of finite collection of closed sets is closed.
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2- The union of in finite collection of closed sets not necessarily closed set.

3- The intersection of in finite collection of closed sets is closed.

Definition:

A topological space (X,T) is called door space . If every subset of X is either

open or closed.

Definition:

Let (X, T) be a topological space and let x € X . Then a subset N of X is said to
be:-

T-neighborhood or neighborhood of x if there exists open set G such that x € G
c N.

Definition:

The set of all neighborhoods of a point x € X is called the neighborhood system
of x and denoted by N,.

Definition:

Let (X, T) be a topological space. Let x € X and let N, be the T — neighborhood

system of X. Then the sub family By of N, is called local base of x if for each N
€ N, 3B € B, such that X € B € N.

Definition:

Let (X, T) be a topology space. a sub family p of T is said to be form a base for
T if for each open set G and each x € G 3 a member B in § such thatxeB € G




Limit points and closure of sets- The third lecture

Definition:

Let (X, T) be a topology space and let A € X A point x € X is called adherent
point or contact point of A if every open set containing X. Contains at least one

point of A

Definition:

A point x € X is called a limit point or accumulation point of A or a cluster
point of A if and only if every open set containing x contains at least on point of

A other than x .

Remark:
The set of all limit points of A is called the derived set of A and will denoted by
A or D, (A)

Theorem:
Let (X, T) be a topology space and let A € X. Then A is closed if and only if A
cA.orD(A)SA.

Theorem:

Let (X, T) be a topological space and let A and B be any subset of X then:

1-P\ =@ or D(B) =D
2- IfASB = D(A) € D(B)




3- D (A N B) € D(A) N D(B)
4-D (AUB)=D(A) U D(B)

Definition:

Let (X,T) be a topological space and let A € X , then the intersection of all
closed sets of A is called the closure of A and denoted by A or C/(A).

Theorem:
Let (X, T) be a topological space and let A € X. Then A is the smallest closed of
A {contains A}.

Theorem:

Let (X, T) be topological space and let A € X then A is closed if and only if A =

A.

Theorem:
Let (X, T) be a topological space and let A and B be a subsets of X then:-

1-@ =@andX=Xand A=A
2-IfAcB= ACB
3-(ANB)S (A NnB)

4- (A UB) S (A U B).




Interior, Exterior and Boundary of sets- The fourth lecture

Definition:

Let (X, T) be a topological space and let A € X, a point x € A is said to be a

interior point of A if and only if A is a neighborhood of x.

Remark: the sets of all interior points of A is called the interior of A and
denoted by int (A) or A°.

Theorem: Let (X, T) be a topological space and let A € X, then:-

1- A% is the largest open subsets contained in A.

2- Ais open if and only if and only if A’ = A or int (A) = A.

Theorem: Let (X,T) be a topological space and let A and B be any subsets of X,
then:-1-@° =@, X=X and (A%’= A%. 2-IfAc\b= A° c B®
3-(ANB)’=A°NB°




Definition:_Let (X, T) be a topological space and let A € X a point x € X is

called an exterior point of A if and only if it is an interior point of A°.

Remark: The set of all exterior points of A is called the exterior of A and
denoted by ext (A).

Definition:_Let (X, T) be a topological space and let A € X. A point x € X is

called boundary point or frontier point of A if and only if :-
Let (X, T) be a topological space and let A € X. A point x € X is called

boundary point or frontier point of A if and only if :-
Every open set containing x intersects both A and A® or A and cl (A).
Remark:

The set of all boundary point is called the boundary of A written as bd (A) or
Fr(A)

Exterior

Interior

Eoundary —




Definition: Let (X, T) be a topological space and let A € X, then A is said to be:

1- Everywhere dense if A = X. 2- Nowhere dense if ext(A) = X.
3- Dense in itself if A € A (i.e.) every limit point of Ais in A.

4- Dense relative to another setB ,ifB C A .

Definition: A topological space (X, T) is said to be separable if and only if there
exists a countable dense subset A of X.

Definition
Let (X, T) be a topological space and let Y € X, then The collection T, = {G N

Y: G € T} is topology on X.

Sub-Spaces on Topological Space- The fifth lecture

Introduction:
It is always possible to construct new topologies from the given ones. The

simplest one is the relativized Topology.

If (X, T) is topological space and Yc X, then Y can inherit a topology from X

as shown in the following result.

Definition:




If (X, T) is topological space and Y < X, then, the collection Ty = {GNY:G €
T} is a topology on Y.

Proof: We observe that Ty satisfies the following properties:
PeETanddNY =0 = Q@ € Ty;

XeETandXNY =Y =>Y €Ty,

Let {H,: a € A} be any family of sets in Ty.

Then, foreacha e AJasetG, € T suchthatH, =G, NY.

U{HpaeAl=u{G,NY:a €A}

=[Uu{G,NY:a€A}]NY € Ty,since U{G,:a € A} €T;

Let H;and H, be any two sets in Ty.
Then H; = Gy nYand H, = G, N Y for some G4, G, inT.
HiNnH, =(G;NnY)N (G, NY)

=(G1NGy)NY E Ty,sinceGy NG, €T.
Hence, Ty is a topology for Y.
Remark:

This topology Ty is the relativized or inherited topology on Y. Also (Y, Ty) is
called the sub-space of (X, Ty).

Example




Let X=1{a,b,c,d,e} and let T={X 0,{a},{c,d},{a,c,d},{b,cde}} be a
topology on X,

LetY ={a,d, e}

Then, we have
XNY=Y;0nY=0;{a}nY={a};{c,d}nY = {d};
{a,c,d}nY ={a,d}and {b,c,d,e} nY = {d, e}.

T relativized topology on Y is given by

Ty = {Y,0,{a},{d},{a,d},{d, e}}.

Example:

Consider the usual topological space (R, u). Let N be the set of all natural

numbers. Then, the relativized topology uy on N is the discrete topology.

Proof: For an arbitrary n € N, we have

{n} = n—l,n+1 N N € uy since n—l,n+1 € u.
2 2 2 2
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Thus, each singleton subset of N is uy- open.

Now, if A is any subset of N, then it can be expressed as the union of singleton

subsets of N, each one of which is uy- open.

And, the arbitrary union of sets being open, it following that A is uy- open.
Thus, every subset of N is uy- open. Hence, the relativized topology for N is

the discrete topology.

Remark:

If (Y, Ty) is a sub-space of the space (X, Ty), then a set open in X is not

necessarily openin'.

Sub-Spaces on Topological Space-Continued- The sixth lecture

Theorem:

Let (Y, Ty) be a sub-space of a topological space (X, T), then, a subset A of Y

Is Ty-closed if and only if A = F n'Y, for some T-closed subset F of X.

Proof:




A is Ty- closed

& (Y —A) is Ty-open

©(Y-A)=GnYforsomeGET
SA=Y-(GNY)=(Y—-G)U(Y—-Y)[by De-Morgan’s law |]
©A=(Y—-G)=YnNGEis T-closed

< A =Y n F,where F = G€is T-closed.

Theorem:

Let(X,T), (Y, T*), and (Z, T**) be three topological spaces such that (Y, T*) is a
subspace of (X, T) and (Z, T**) be a subspace of (X,T*). Then, (Z, T*) is a
subspace of (X, T).

Proof:
Clearly, Y&cX and ZcY, so, ZcX

In order to prove that (Z, T**) is a sub-space of (X, T), we must show that the

T-relativized topology on Z is T* i.e. T.=T™".
Let E € T*". Then,

E=HNZforsomeHE€ET" [(Z, T*") is a sub space of (Y, T")]

=(GNnY)nZforsomeGeT [(Y,T")isasubspaceof (X,T)]

=GN(YNZ)=GNZ [ZcY]




Thus, E = G N Z for some G € T and therefore, E € T,

so, EET*"=E€ET, i.e.T" C Ty

Again, let W e T;. Then,W=VnZforsomeVeT.

But, VET=>VNYET" [(Y,T") is a sub space of (X, T) ]
>(VNnY)YNZeT™ [(Z T")isasub space of (Y, T*)]
=>VN(YNZ)=VNZeT™
>WeT"™

Thus, W € T, = W € T** and therefore, T, < T*".

Hence, T; = T™.

Accordingly, (Z, T**) is a subspace of (X, T).

Theorem:

Let (Y, Ty) be a subspace of a topological space (X, T). Let y €Y. Then, a
subset M of Y isa T; — nhd. of y iff M = NN Y for some T; — nhd. N of y.

Proof:

Let M be a Ty — nhd. of y.

Then, 3 a Ty —open set H such thaty € H € M.

Now, H being Ty-open, we have H = G N Y for some G € Ty.

yEGNYCS M.




Let MUG=N.

Then,ye Gc MUG = N,where G €T.

This shows that N isa T — nhd. of y.

Further, NNY=(MUG NY=MNY)U(GNY) =M.
[GNYS MandMNY = M]

Conversely, let M = NN Y for some T — nhd. N of y.
Then, 3 a T-open set G such thaty € G € N.
Consequently, yeGNYCSNNY=M

This shows that M is Ty —nhd. ofy. [GNY € Ty]

Sub-Spaces on Topological Space-Continued- The seventh lecture

Theorem:
Let (Y, Ty) be a subspace of a topological space (X, T). Let A c Y. Then,

cly(A) =clx(A) NnY.
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Proof:

Since clx(A)NY is T-closed, it follows that clxy(A)NY is Ty-closed,
Thus, clx(A) NY is a Ty-closed superset of A.

But, cly(A) being the smallest Ty-closed superset of A
cly(A) Ccx(A)NnY

Again, cly(A) being Ty-closed, we have

cly(A) = FnY for some T-closed set F.
Accly(A)=FNY&soACF.

Now,ACS F=cly(A) S F=F [ FisT-closed]
cxy(A)NYCSFNY =cly(A)

Hence, from (i) & (ii) we have, cly(A) = clx(A) nY.
Theorem:

Let (Y, Ty) be a subspace of a topological space (X, T). Let Ac Y. Then, a
pointy € Y is a T-limit point of A if and only if y is a T-limit point of A.

Proof:
y is a Ty-limit point of A.

S [M—{y}]NnA+ @V Ty- nhds M of y

S [(NNY)—{y}]nA# @V Ty- nhd. N of y




S (N—{yhNA=+#0V Ty-nhd. Nofy

& yis a T-limit point of A.

Remark: If Dy(A) and Dx(A) denote the derived sets of Ain (Y, Ty) & (X, T)

respectively, then
Theorem:

Let (Y, Ty) be a subspace of a topological space (X, T). Let A c Y. Then, Ty-int
(A) D T-int (A).

Proof:
y € T-int (A) = vy isa T-interior point of A
= AisaT-nhd. ofy
= ANYisaTy-nhd. ofy
= AisaTy-nhd.ofy [AcY=>ANY=A]
= A € Ty-int (A)
Ty-int (A) D T-int (A)
Remark:

In general, Ty-int (A) # T-int (A).




Example: Let X={ a, b, c, d, e} and let T={ X, @, {a}, {a, b}, {a, c, d}, {a, b, e},
{a, b, c, d} be a topology on X.

Let Y={a, c, e}. Then, Ty={Y,0, {a}, {a, c}, {a, e}}.
Now, if A={a, c}c Y, then clearly

Ty-int (A)={a, c} and T-int (A)={a}.

Thus, in general, Ty-int (A) # T-int (A).
Theorem:

Let (Y, Ty) be a subspace of a topological space (X, T) and let A c Y. Then, Ty-
bd (A) € T-bd (A).

Proof:
y € Ty-bd (A) > y € cly(A) ncly(Y — A)

>yeclk(A) nNye{ck(Y-A)}NY

=y € clk(A) & y € clx(X — A) [Y—AC X—A]

=y €T — bd (A).

T,-bd (A) c T-bd (A)

Theorem:




Let (Y, Ty) be a subspace of a topological space (X, T). Let B be a base for T,
then By = {B N Y:B € B} is a base for Ty.

Proof:

Let H be any Ty-open set and let x € H. Then,3 a T-open set G such that
H=GnNnY.

Now, G is a T-open set containing x & 8 is base for T.

So, 3 aset B in B such that
xeEBCG
xeBNYSCGNY=H

Thus,toeach He Ty &x e HIBNY € By such that
xeBNYCH.

This shows that By is a base forTy.

Definition: A property of topological space is called or said to be a hereditary

property if it is satisfied by every sub spaces of the given space




The Continuity in Topological spaces- The eighth lecture
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Definition:

Let(X, T) and (Y, T) be topological spaces and Let f: X — Y be Map Then fis
said to continuous at x € X iff for each U openin Y (f (x) € U) 3 an open set

Vin x containing x (x € V) such that f (V) c U.

The function f is said to be continucus at the point a in X if there exists local
bases /5a of a and [51a) of f(a) such that for every B in [51a there exists a

in a such that Z B.

Remark:

If the mapping f continuous at each x € X then the mapping is called

continuous mapping

Example:

Let X={1,2,3}and T ={0,X, {1},{2},{1,2}}
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Let Y ={a, b} and T={0,Y, {a}} and

f:X > Ydefinedasf(l)=a,f(2) =f(3)=b
G=X->Ydefinedg(1)=b,g(2=9g@)=a

Then f is continuous mapping but g is not continues mapping.
Example:

Let f: (X, T) = (X, T) be a constant mapping then f is continuous.
Proof:-

Letf: X— Ydefendbyf(x)ec,vVxe.X

Let U be open subset in Y then:

i X if CeU
W =]y i ceu

Since @ and X are open subset then f is continuous.

Example:

Let x={a, b, ¢, d} and T={@,X,{a}, {a,b},{b,c,d}, {b}}and f: (X,T)—» (X,T) be a
mapping by : f(a)= ,f(c)=b, f(b)=d, f (d)=c Then

1- fif not continuous .
2- f continuous at point d.

3- f not continues at point c.




Definition:

A mapping f: (X, T) = (Y, T*) is open mapping iff U is open in x then f (U) is

openinY.

Example:

Let (X,T)be topology space and let Y={a, b,c}and T ={ @,Y,{a},{a,c}} Then a
mapping f:X— Y defined as :f (x)=, V x € X is open.

Definition:

A mapping f: (x,y) = (Y,T ) is closed iff E is closed in X then f(E)closed in Y.

Example:

Let (X, T) be a topology and Y={a, b, c}and T={@ ,Y, {a},{a, c}then mapping
f:x - ydefined f(x) = b; Vx € Xis closed




Results on continuous mapping in Topology spaces- The ninth lecture

Theorem:

Let (X, T) and (Y, T') be topology space let f:x — y then f is continuous iff the

in veres image under f of every open set iny is open X.
Proof:-

Let f be continuous and let H be any open satiny if f*(H) = @, itis clearly open
so let f 1 (H) #0, letx € f* (H)

Then f(x) € H Bycontinuity of f,3 an open set Gin X such that x €
G and f(G) S H. consequently x € G S f *(H)

This show that f* (H) is nhd of each of its points and therefore, it is open in X.

Conversely , let the inverse image under f of every open set in y be open in X,
then in order to show that if is continues it is sufficient to show that it is

continues at an arbitrary point x € X let H be any open set in y such that

f(x) € H. Then x € f! (H) .by hypothesis f*(H) is an open set in X Now, if we
set f *(H) = G, Then h is an open set in X contain x such that f(G)=f[ f
(H) ] H. This Show that f is continues at each point of X.

Theorem:




Let (X, T) and (Y, T) topology space and let f: X —Y Then F is continuous
Iff for each x € X The inverse image under F of every T — nhd of f (x) is T-nhd
of X.

Proof:-

Let f be continuous and let x € X let M be and T — nhd of f (x) then 3 an open
set Hiny Such that f(x) € H € f (M) Since f is continuous and His T open , So
f *(H) is T- open this Show that f*(M)isa T — nhd of X.

Conversely , let the inverse image under f of every T-nhd of f(x) be a T-nhd of
X let H be any open set in Y note is f *(H) = @, it is clearly open So let f (H)
+ @ and letx € f (H) then f (x) € H, This show that His a T- nhd of f (x). So
by hypothesis ; f (H) is aT- nhd of X .Thus f *(H) is a T-nhd of each of its
points and there its open, so it follows that in verse image under f of every open

Sub of Y is an open Sub Set of X. Hence f is continuous.
Theorem:

Let ( X, T) and (Y,T) be topology space and f: X — Y then f is continuous iff

the inverse image under f of every closed Subset of Y is a closed sub set of X.
Proof:-

let f be continuous and let K be any closed sub set of Y then (Y-Kk) is an open

sub set of y so by continuity of f, f *(Y-K) is an open sub set of X But, f (Y (k)

is open and therefore f (k) is closed




Conversely: - let the inverse image under f of every closed sub set Y then (Y-H)
is closed and therefore by hypothesis f*(Y-H) is closed But f *(Y-H) = f }(H) =
X-f }(H). So X. f (H) is closed and therefore f *(H) is open. Thus the inverse
image under f of every open sub set of Y is an open sub set of X. This show that

f is continuous.
Theorem:

Let X, Y and Z be any three Top — Spacesand letf: X — Y andg: Y — Z be

cont mappings Then the composite gof : X— Z is continuous.
Proof:-

Let H be any open sub set in Z, we must prove that (gof) *(H) is open sub set in
X. Since g is cont — g™(H) is open sub set in Y and Since f is cont — (g’
(H))) is open sub set in X So, f *(g(H)) = (f'og™) (H) = (gof™") (H) is open in X.
Thus The inverse image under (gof) of every open sub set of Z is open sub set
of X.

Theorem:

Let (X, T) and (Y, T*) be a Topological space and Let f: X—Y Then f is

continuous iff for every B € Y; f1(B) < f }(B)

Proof:- Let f be continuous and let B € Y. Then B being closed, by continuity
of f, f “(B)isclosed .. f~1(B)=f"(B). Now,B<S B= f'(B) C
f®) = f'(®)cf(B)

Conversely:- Let f *(B) < f (B) for every B C Y.
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Now, let K be a closed sub set of Y so that f = K.

Now, by hypothesis, f *(K) € f*(K) = f *(K). But, f }(K) € f}(K)

~ 1K) = f ' (K) showing that f *(K) is closed thus the inverse image under f

of every closed sub set of Y is a closed sub set of X Hence f is continuous.

Results on continuous mapping in Topology spaces-Continued-
The tenth lecture

Theorem:

Let (X, T)and (Y,T) be topology space and let f:X — Y then f is continuous
iff for every BC Y, {f'B)y < f'(B)

Proof:-

Let f be continues and let BS y .then B°being open, by continuity of f, f* (B9 is
consequently { f*B)cf*(B)={f'B°)}'c{f ' B)}"

= {f!B°)c {fTB) '~ {f B2 ByforeveryBSY
Conversely:- Let {f*(B) ¥ 2 f ' (By foreveryBcC Y

Let H be any open sub set of Y, so that H°=H

« By given hy phthisis f*(H) < { f * (H)} Or

FL(H) }S{F ) e But {F () 'S {2 (H) ~ {F* ) = (H)




Showing that f-1(H) is open Thus, the inverse image under f of every open sub

set of Y is on open subset of X Hence f is continuous
Theorem:

Let X, Y and Z be any Three topological spacesLet f: X - Y and g:Y — Z be

continues mapping then, the composite mapping (gof) :(X— Z is continuous
Proof:-

Let H be any set open z. then by continuity of g, g™ (H) is open in Y And by
continuity of f{g" (H) }is open in X

So,f{g*(H)}=(f'og") (H) is open in x. Thus the inverse image under (g

of) of every open subset of Z is an open subset of X. Hence of is continuous.
Theorem:

Let (X, T)beaTop-SP andletY < X Then the collection:-

Ty,={G NnY: G e T}is Topology on X.

Proof:-

1P eTANdONY=0= QET,.

XeETANdXNY=Y=YET,.

(2) let H; and H; be any tow sets in Ty we must prove That

HinH,eT,

SinceH;eT{;=H; =G nYforsome G, €T
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SinceH eTy=H,=G,nYforsome G, €T
So,HINH,=(G:NnY) Nn(G,NY)
=(GinGy) NY €T,

~ HiNHET,

(3) let { Hy : a €A} beany family of setsin T,
We must prove that U {H,. a €A} € T,.

Since { Hx:. a €A} € T,.so that for each. a €A

SAsetGaeT"S—-t"H,=GXxNY=U{H:ca€A}=U{G,NY:a EA}=
[U{Gx:a €A} NY € T, Therefore .U {H;: x EA} E Ty .

Theorem:

Let (X, T) and (Y,T") be topology space and let f: X — Y be continuous let A

cX Then the restriction fo of fto Ais To—T continuous
proof:-
let H be and T - open sub set of Y then fa* (H) = A n f *(H)

Note, by continuity of f, f* is T- open and therefore:

AN f (H) is T, — open. Consanguinity, o™ (H) is Ta — open Thus the inverse

may under fo of every T — open sub set of Y is a T — open sub set of A.

Theorem:




Let ( X, T) and (Y, T') be topology space and f: X — Y be one — one and
continuous. Then f maps every dense in itself subset of X on to dense in itself

subset of Y
Proof:-

Let A be dense init self subset of X, Then every point of A is a limit point of A .
Let Y € f(A). Then f being one- one 3 aunigue Xe A such Y =f (x) new let N
be T-nhd of f (x) then by continuity of f, f*(N) is a T — nhd of X But. Xe A
being a limit point of Af*(N) must contain at least a point Z # X of A.

Now Z € f'(N) = f (2) € (N).
AISOZ=X=f@) #fX) =Y

Thus N contains at least one point f ((Z) of f (A) defferent fromy. This shows
thaty is a limit point of f (A) thus each point of f (A) is a limit point of f (A) .

Hence f (A) is dense in itself.

Theorem:

E every continuous image of separable space is separable.
Proof:-

Let (X,T) be separable and let (Y, T') be topological space let be a continuous
mapping of X on to Y Now X being separable 3 a countable subset A of X Such

thatA=X.-Y=f(X)=f(A) c f(A)




So, f(A)=Y.~f(A)CY, always. Also f (A) is countable dense subset of Y,
Hence (Y, T) is separable.

The homeomorphism in topological Spaces- The eleventh lecture
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Definition:

Let (X, T) and (Y, T') be Top — spaces and let f: X— Y. Then f is said to be:-
1 — Open mapping iff the image under f if every open setin X isopensetin .

2 — Closed mapping iff the image under f of every closed set in X is closed set in
Y.

3 — bi-continuous mapping iff f open and continuous.
Example:
Let (X, T)and (Y, T') be a topology spaces: where

Y ={a,b,c} And T = {0,Y,{a}, {a, c}} then a mapping f: X — Y defined as:




f(x) = a,vVx €X Isopen since for any u is T-open set, we have:

@ Whenu= @
f (u) :{

{a}Whenu # @
And each on of @ and{a}is T - open set.
{f(u)is open iny V u open Subset in X}

Example:

Let (X, T) and (Y, T) be topology spaces and let Y ={a,b,c} and T =
{0,Y,{a},{a,c}}

Then the mapping f: X — Y defined as:- f(x) = b,V x € X, is closed mapping

since for any fis T — closed set ,

dWhenF= 0
f(F) :{

{b}When F = @
And each one of @ and {b}is T - closed
{f (F)isclosed inY V F closed sub setin X.}

Theorem:

Let (X, T) and (Y, T) be topology space let f:X — Y Then fisopen iff f(A) S

[ f(A)]° forevery A CX




Proof:
Let f be open, Then A° being open it follows that f (A)° is open consequently, [f
(A)°]° = f (A®)
Now: A° € A = f(A)° S f(A)
= [f(A)° < [f(A)]°
= f(A)° < [f(A)]°
Conversely: let f (A°) € [f(A)]° for every A CX
Let A be an open subset of X so that A° = A
~ F(A) c[fA)l°= fA) c[f(f)]° -~ [A°=A But[f(A)]° < f (A)

~ [f(A)]° = f (A). This show that f (A) is open when every A is open.

Theorem:

Let ( X,T) and (Y, T) be topology space let f: X — Y then f is closed iff
f(A) < f(A) for every A CX.

proof: Let f be closed and let A CX. then A being closed f (A) is therefore

closed consequently f(A) = f(A)

Now,AS A = f(A) € f (A)

= f(A) C{f(A)}




Hence, f(A) < f (A) for very ACX

Let A be a closed subset of X then A = A

~f(A) < f @A) = f(A) S f(A) [~ A=A]

But, f(A) € f (A) Therefore f(A) = f(A).
This show that f (A) is closed, when every so is A. Hence f is a closed mapping.

Definition:

Two topological spaces (X, T) and (Y, T) are closed homeomorphic if there
exits: One — to — one and onto function f: X — ysuch that f and f * are

continuous and the function f is called homeomorphism.

Example:

Let X ={a,b,c,d} and T = {0,X, {a}, {b}, {a,b}}

AndY = {a,b,c,d} and T {9,y {c}, {d}, {c,d}}

And f: X — Y defined as:

f(@=a,f(b)=b,f(c)=c, f(d)=d.is(X, T)

And (Y, T') are homeomorphic?

1 —fis one — to — one and onto But f is not continuous since {c} € T But

f {c} = {c} ¢ T . Therefore f is not homeomorphic.

Example:




LetX ={a,b,c,d}; T = {@,y,{c},{d},{c,d}} and g: (X, T) - (Y, T) such that:-
g(@=d,g()=c,g(c)=b,g(d)=a.is

(X, T) and (Y, T') are homeomorphic?

Sol:-

(1) And (2) are clear g is one — to — one and onto.
(3) Is g continuous?

MYeT -gl(y)=XeT.

(M g{o}=0 €T

*)g™{c}={b} e T*,g™{d} = {a} € Tand

(*) g™ {c, d} ={a, b} € T . So g is continuous,

(4) is g* continuous?

*) @) {a}=g{a}={d}eT

") @) {P}=0€T
(*) (") "{b}=g{b}={c} €T

™ @) X}=Y€eT.

(") @) " {fab=g{ab}={d cteT
Since g is one — to — one, onto, g and g ™ are continuous.
So, g is homeomorphism. Therefore (X, T) and (Y, T') are homeomorphic
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Theorem:

let (X, T) and (Y, T) be topology space let f be a one — one mapping of ontoY

then the following statements are all equivalent to one another:-
(i) fis open continuous.

(if) f is homeomorphism .

(i) fis closed and continuous.

Proof:- (i) = (ii) let f be a one — one open and continuous mapping of X onto Y

then by definition it is a homeomorphism so (i) = (ii)

(i) = (iii) : let f be homeomorphism. Then it is a one — one continuous open

mapping of X onto Y. Let f beany closed subset of X then (X-f) is open
Now f being open it follows that f (X-f) is open But
f(X-H)=f(X)-f(F) = Y-f(F)

Thus Y-f (F) is open and therefor, f (F) is closed. This show that f is closed and

continuous so (ii) = (iii)

(itlt) = (i) : let f be closed and continuous let G be an open subset of X then X —

G is closed and being closed f (X-G) is therefore, closed
But, f (X-G) =f (X)-f (G) = Y-f(G)

Thus, Y. f (G) is closed and therefore, f (G) is open this show that f is closed

and continuous.




So (iii) = (i) Thus, (i) = (ii) = (iii) = (i) Hence all the given statements are

equivalent to on another
Theorem:

Let (X, T) and (Y, T') be topology space let f : X — Y be a one — one mapping
of X on to y then f is a homeomorphism iff f (A) for every AcX

Proof:

Let f be homeomorphism. Then f is a one — one continuous and closed mapping
of Xonto Y.

Let AcX then by continuity of f, we have f (A) € f (A)
Also, f being closed we have f (A) € f (A) , hence f (A) = f (A)

Conversely: - let f : X — y such that is f is one — one onto and for every A c X,

let f (A) =f(A) Then f (A) S f (A) and f(A) € f (A) . But these results show

that f is continuous and closed f is one — one onto also, so it a homeomorphism.

The homeomorphism in topological Spaces-Continued- The
twelfth lecture

Theorem:

Let (X, T) and (Y, T ) be topology space let f: X — Y Be a one — one mapping
of X onto Y then fis a homeomorphism iff f {A}° = {f(A)}° for every Ac X.

Proof:




Let f be homeomorphism. Then f is are one-one continuous and open mapping
of Xonto Y let A € X.

Then f being open we have f (A°) € {f (A}°........(1)

Also f being continuous and on to and f (A)c Y we have f *[(f(A)]° = A°
[f1(B°) < {f(A)]° for every Bc y

Or [f(A)° < f (A)°

Thus for (1) and (2) we get f (A)° = [f(A)]°

Conversely:-

Let f be one-one mapping of X onto y such that f (A)° = [f(A)]° for every
Ac XThenf (A)° c [f(A)]°and [f(A)]° € f(A)°

But f(A)° c [f(A)]° for every A c X implies that f is open agin let BCX. Such
that B = f(A) or A = f*(B)

Now,

[f(A)]° = f(A°) = ff(A)°] € [fIf(A2)] = A
= f'(B°) < [f'(B)]°

~{A = f(B)and f (A)=B}

IS homeomorphism

~XT) =Y, T)= (Y, T)~ (X, T)




(iii) Transitivity:-

Let (X,T) = (Y,T) and (Y,T) =~ (ZT) and let f and g be the corresponding
homeomorphisms Then f is one-one onto, T -continuous and f* is T -T
continuous Also g is one-one onto T -T_ continuous and g™ is T~ -T continuous
we claim that the composite mapping gof: X — Zis a homeomorphisms since
the composite of tow continuous mapping beings being continuous it follows
that got is T, continuous more-over g~ is T ,T continuous and f'is T'-T

continuous.
= fogtis T -T continuous

—=(gof)™is T~ -T continuous. Thus gof is homeomorphisms and then (X, T)=
(Z,T)).

Hence the relation of homeomorphism on the set of all topology space is an

equivalence relation. This shows that f *(B°) < {f*(B)}° for every B c y so f is

continuous. Thus, f is a one — one continuous open mapping of X on to Y Hence

f is a homeomorphism.

Theorem:

The relation of homeomorphism on the set of all topological spaces is

equivalence.

Proof:-




This relation satisfies the following properties:

(i)-Reflexivity let (X, T) be any topology space then the identity mapping I: X
— X:I(X) =X.

Is clearly one-one onto, I is continuous for if G € T, Then I''(G)=G e T .
Also l'isopen, forifGe T, ThenI(G)=GET.
Thus | is homeomorphism. Therefore (X,T) = (X,T)

(i) Symmetry: - let (X,T) ~ (y,T) and let f be the corresponding

homeomorphism. Then f is one-one onto T-T  continuous and open. Now f is

one-one onto => f * is one-one onto f is open = f ™ is T-T  continuous = (f )™

is T-T~ continuous Thus show that the mapping f*: Y — X.




Connectedness and Compactness in Topological

Spaces




The thirteenth lecture

SEPARATION AXIOMS (Ty, Ty, Ty, T,1 T3T,1, T4y AND Ts)
2 2

AND RELATIONSHIPS AMONG THEM

To-property and spaces

A topological space X has the T,-property if there exists an open set which separates any
two distinct points: if x and y are distinct points of X, there exist an open set which
contains one but not the other. Let me be more explicit. A topological space X has the T,
property if, for any two distinct points x and y in X, either there exists an open set M(x)
containing x which does not contain y, or there exists an open set N(y) containing y which

does not contain Xx.
NOTE: that the space X is an open set containing X, but it contains y, and vice versa.

Here’s a picture of T,, showing an open set containing y that does not contain x. A T,

space is sometimes, but rarely do I think, called Kolmogorov.




The fourteenth lecture

To-Space and T, property and spaces

A topological space X has the T, property if x and y are distinct points of X, there exists an

open set M(x) which contains x but not y, and an open set N(y) which contains y but not x.
One crucial property of a T, space is that points (singleton sets) are closed.
This time each point has an open set which contains it but not the other.

NOTE: that we did not assert that the two open sets do not intersect, merely that their
intersection contains neither x nor y. (That’s the next property.) Here’s a picture of Ty,
showing open sets which intersect, but their intersection, as we require, does not contain x

ory. A T, space is sometimes, but again rarely, | think, called Frechet.

T,-spaces




The fifteenth lecture

T, property and spaces

A topological space X has the T, property if x and y are distinct points of X, there exist
disjoint open sets M(x) and N(y) containing x and y respectively. Here’s a picture of T,. A
T, space is almost always, in my experience, called Hausdorff. One crucial property of a
Hausdorff space is that limit points are unique. (No, I haven’t defined a limit point. That’s

another interesting subject.)

T,-spaces




The sixteenth lecture

15 and reqular

Now we look at separating sets instead of points, still separating them by open sets of some
kind. First we separate a point and a closed set. (A set A in X is closed if its complement X
— A is open; the closure of A (A), is the smallest closed set containing A.) A topological
space X has the T3 property if there exist disjoint open sets which contain any closed set
and any point not in the set: for any closed set B and any point x & B, there exist disjoint

open sets containing x and B respectively.

Here’s T;. This time I use uppercase (“B”) and color to denote the closed set.

Ts-spaces

It is crucial that the following set and topology (shown earlier as “an intermediate

example”) is T3 but not T, (the problem is that the point is not closed):

X={a, b,c}.T={0X,{a},{b,c}}




This is why and where we need to combine properties in order to get especially
worthwhile topological spaces. (Yes, we can study Ts, T4, and Ts spaces per se. it is more
fruitful to StUdy T3+ Ty, Tg+ Ty, and T+ Tl)

We say that a space is regular if itis T, and Ts.

(In fact, we can show that if a space is T, and T, then it is T,, hence T4, hence T, and T..
this means we could have defined a space as regular if it is To and Ts. Of course, T, and T3

immediately implies Ty and T3, so the two possible definitions of “regular” are equivalent.)

Although I used “normal” and “T,” in the introductory discussion, the alternative
terminology appears here as well, It applies to all subscripts 3 and higher. Where | say
that a topological space is regular iff it is T, and T;other people use regular to refer to my
T property, and say a topological space is T iff T, and regular. Whereas the progression
of the earlier separation axioms kept tightening the requirements on the open sets whose
existence we asserted, here we just replaced a point by a closed set. That would be a

refinement of the earlier property if points themselves were closed sets. But that’s T, and

that’s why we want to study spaces which are both T; and Ts,.




The seventeenth lecture

T, and normal

Now we separate two closed sets instead of a point and a closed set. A topological space X
has the T, property if there exist disjoint open sets which contain any two disjoint closed

sets: for any disjoint closed sets A and B, there exist disjoint open sets containing A and B

respectively.

T,4-Spaces

| should mention that a bad property of T,spaces is that T, is not hereditary: not every

subspace of T4is T,. We say that a space is normal if it is T, and T4. We still have the

analogous: not very subspace of a normal space is normal.




The eighteenth lecture

Ts and completely normal

Two subsets A and B of topological space are separatedif A NB=¢ =ANB.

A topological space X has the Ts property if there exist disjoint open sets which contain
any two separated sets: for any separated sets A and B, there exist disjoint open sets

containing A and B respectively.

Ts-spaces

Should mention that an alternative equivalent definition of Ts is that: a space is Ts iff

every subspace is T,. It corrects the problem with T,.

We say that a space is completely normal if it is Ts and T;. We have the analogous: a space
is completely normal iff every subspace is normal. It corrects the problem with normal,

too.




Consider the two open intervals A = (0, 1/2) and B = (1/2, 1) with the usual topology of the

real line. The sets do not intersect: A N B = @, but the closed intervals, their closures, do:

[0,5]

B= [% ,11and A NB = {%}, Nevertheless, A and B are separated, because A N B =

»=ANB.

A and B have the Ts property because A and B themselves are disjoint open sets. All of
those properties, Ty thru Ts, asserted the existence of open sets, sometimes satisfying

additional conditions.




The nineteenth lecture

3 % And Completely Regular

We have an intermediate property which is described differently.

Given two disjoint subsets A and B of a space X, a Urysohn function for A and B is a
continuous function f: X — [0,1] such that f (A) =0 and f (B) = 1.

Urysohn’s Lemma, then, says that if A and B are disjoint closed subsets of a T, space, then

there exists a Urysohn function for A and B.

A topological space X has the 3% property if there exist a real-valued continuous function

which separates an open set from any point not in it: (i.e.) for each open set U c X and

each x not in U, there exist a Urysohn function f for x and U.

We say that a space is completely regular (or Tychonoff) if it is 3% and T;.




The twenty lecture

Implications of the properties

At this point, thanks to adding T; to the definitions, we can show (!)

Completely normal = normal = completely regular = regular = T,1 = T, =T, =T,
2

The implications among the T; properties (for i > 2 %) are not so pretty.

Note that a Urysohn space was not in that list. Instead of the subsequence completely

regular = regular = T,1
2

We could have written completely regular = Urysohn =T 1.
2

But there is no inclusion relationship between Urysohn and regular. We have two

beautiful inclusions, if we omit either regular or Urysohn, but not if we include both.

This is the second reason why I decided to follow Steen & Seebach and use T’s for the
properties and names for the combinations. If we did it the other way, with names for the

properties and T’s for the combinations, we could write

Ts =Ty =T, 1=Ts = T,1=T, =T, = Ty, or, more elegantly,
2 2

Ti=Tjfori>j,withi, jin{0,1,2T,,3,T,,4>5}
2 2

But then we’ve left Urysohn spaces out in the cold. Since the theorem is no longer pretty, I

chose to use the shorter Ti to denote a property, and write, for example, normal = T, + T,.

| first saw them the other way: T, = normal + T, etc.
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And it is possible that | would not have been so struck by them without the lovely Ti = Tj

for, i > j. (Adamson emphasizes that he chooses this convention because of the simplicity

of that statement.) Nevertheless, | have presented them the other way. The fact is, if

you’re studying someone else’s work, you may have to adopt their terminology as long as

you’re there.




